Reaction dynamics and mechanism of the Cl + HD(v = 1) reaction: a quantum mechanical study

J Phys Chem A. 2013 Aug 15;117(32):7030-41. doi: 10.1021/jp312758r. Epub 2013 Mar 27.

Abstract

Time-independent quantum mechanical calculations have been performed in order to characterize the dynamics and stereodynamics of Cl + HD reactive collisions. Calculations have been carried out at two different total energy values and for various initial states using the adiabatic potential energy surface by Bian and Werner [J. Chem. Phys. 2000, 112, 220]. Special attention has been paid to the reaction with HD(v = 1) for which integral and differential cross-sections have been calculated and the effect of vibrational vs translational energy on the reactivity has been examined. In addition, the reactant polarization parameters and polarization-dependent differential cross-sections have been determined. From these results, the spatial preferences of the reaction and the extent of the control of the cross sections achievable through a suitable preparation of the reactants have been also studied. The directional requirements are tighter for the HCl channel than for the DCl one. Formation of the products takes place preferentially when the rotational angular momentum of the HD molecule is perpendicular to the reactants approach direction. Cross-sections and polarization moments computed from the scattering calculations have been compared with experimental results by Kandel et al. [J. Chem. Phys. 2000, 112, 670] for the reaction with HD(v = 1) produced by stimulated Raman pumping. The agreement so obtained is good, and it improves the accordance found in previous calculations with other methodologies and potential energy surfaces.