Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Biosyst. 2013 May;9(5):930-9. doi: 10.1039/c3mb25426g.

Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules.

Author information

1
Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.

Abstract

Bioactive small molecules are powerful tools used to evaluate protein function under physiological and pathological conditions. Over recent decades, utilization of a variety of biologically active small molecules in basic research and clinical applications has provided tremendous benefits in understanding the molecular mechanisms of biology and accelerating drug development. This review focuses on recent advances in the identification of new small molecules and their target proteins for exploring angiogenesis at the molecular level. In particular, we focus on the oxygen-sensing role of ubiquinol-cytochrome c reductase binding protein (UQCRB) of mitochondrial Complex III through identification of the protein target and the mode of action of a natural small molecule, terpestacin. The positive feedback approach of chemistry and biology provides a new way to explore functional roles of proteins and to translate this information into practical applications.

PMID:
23475074
DOI:
10.1039/c3mb25426g
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center