Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chem Neuroanat. 2013 May;50-51:66-74. doi: 10.1016/j.jchemneu.2013.02.006. Epub 2013 Mar 6.

Mapping of tyrosine hydroxylase in the diencephalon of alpaca (Lama pacos) and co-distribution with somatostatin-28 (1-12).

Author information

1
Laboratorio de Neuroanatomía Humana, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Facultad de Medicina, Avenida de Almansa 14, 02006 Albacete, Spain. Pilar.Marcos@uclm.es

Abstract

Based on previous work describing the distribution of somatostatin-28 (1-12) in the male alpaca (Lama pacos) diencephalon, and owing to the well known interactions between this peptide and the catecholaminergic system, the aims of this work are (1) to describe the distribution of putative catecholaminergic cell groups in the alpaca diencephalon and (2) to study the possible morphological basis of the interactions between these substances in the diencephalon of the alpaca by using double immunohistochemistry methods. Thus, the distribution of catecholaminergic cell groups in the alpaca diencephalon agrees with that previously described in the diencephalon of other mammalian species of the same order: the A11, A12, A13, A14 and A15d cell groups have been identified; however, we have observed an additional hitherto undescribed cell group containing tyrosine hydroxylase in the medial habenula. In addition, double-labelling procedures did not reveal neurons containing tyrosine hydroxylase and somatostatin, suggesting that the hypothalamic interactions between catecholamines and somatostatin at intra-cellular level must be carried out by a somatostatin molecule other than fragment (1-12). Otherwise, the overlapping distribution patterns of these substances would suggest some interconnections between groups of chemospecific neurons. These results could be the starting point for future studies on hypothalamic functions in alpacas, for example those concerning reproductive control, since other physiological studies have suggested that this species could have different regulatory mechanisms from other mammalian species. Our results support the Manger hypothesis that the same nuclear complement of neural systems exists in the brain of species of the same order.

PMID:
23474224
DOI:
10.1016/j.jchemneu.2013.02.006
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center