Format

Send to

Choose Destination
Cancer Discov. 2013 May;3(5):564-77. doi: 10.1158/2159-8290.CD-12-0504. Epub 2013 Mar 7.

TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia.

Author information

1
Department of Pediatric Oncology, Children's Hospital, Boston, MA, USA.

Abstract

Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the Janus-activated kinase (JAK) tyrosine kinase family, TYK2, and its downstream effector STAT1, in T-cell acute lymphoblastic leukemia (T-ALL). Gene knockdown experiments consistently showed TYK2 dependence in both T-ALL primary specimens and cell lines, and a small-molecule inhibitor of JAK activity induced T-ALL cell death. Activation of this TYK2-STAT1 pathway in T-ALL cell lines occurs by gain-of-function TYK2 mutations or activation of interleukin (IL)-10 receptor signaling, and this pathway mediates T-ALL cell survival through upregulation of the antiapoptotic protein BCL2. These findings indicate that in many T-ALL cases, the leukemic cells are dependent upon the TYK2-STAT1-BCL2 pathway for continued survival, supporting the development of molecular therapies targeting TYK2 and other components of this pathway.

SIGNIFICANCE:

In recent years, "pathway dependence" has been revealed in specific types of human cancer, which can be important because they pinpoint proteins that are particularly vulnerable to antitumor-targeted inhibition (so-called Achilles’ heel proteins). Here, we use RNAi technology to identify a novel oncogenic pathway that involves aberrant activation of the TYK2 tyrosine kinase and its downstream substrate, STAT1, which ultimately promotes T-ALL cell survival through the upregulation of BCL2 expression

PMID:
23471820
PMCID:
PMC3651770
DOI:
10.1158/2159-8290.CD-12-0504
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center