Format

Send to

Choose Destination
See comment in PubMed Commons below
Islets. 2012 Nov-Dec;4(6):405-16. doi: 10.4161/isl.23101. Epub 2012 Nov 1.

Accumulation of cadmium in insulin-producing β cells.

Author information

1
Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. m-muayed@northwestern.edu

Abstract

Evidence suggests that chronic low level cadmium exposure impairs the function of insulin-producing β cells and may be associated with type-2 diabetes mellitus. Herein, we describe the cadmium content in primary human islets and define the uptake kinetics and effects of environmentally relevant cadmium concentrations in cultured β cells. The average cadmium content in islets from 10 non-diabetic human subjects was 29 ± 7 nmol/g protein (range 7 to 72 nmol/g protein). Exposure of the β-cell line MIN6 to CdCl 2 concentrations between 0.1 and 1.0 µmol/L resulted in a dose- and time-dependent uptake of cadmium over 72 h. This uptake resulted in an induction of metallthionein expression, likely enhancing cellular cadmium accumulation. Furthermore, cadmium accumulation resulted in an inhibition of glucose stimulated insulin secretion in MIN6 cells and primary mouse islets. Our results indicate that this impairment in β-cell function is not due to an increase in cell death or due to an increase in oxidative stress. We conclude that mouse β cells accumulate cadmium in a dose- and time-dependent manner over a prolonged time course at environmentally relevant concentrations. This uptake leads to a functional impairment of β-cell function without significant alterations in cell viability, expression of genes important for β-cell function or increase in oxidative stress.

KEYWORDS:

cadmium; insulin secretion; metallothionein; zinc transporters; β cells

PMID:
23466887
PMCID:
PMC3605169
DOI:
10.4161/isl.23101
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center