Send to

Choose Destination
Cell Cycle. 2013 Apr 1;12(7):1119-27. doi: 10.4161/cc.24164. Epub 2013 Mar 6.

The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation.

Author information

Cancer Research Institute, Southern Medical University, Guangzhou, China.


In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.


RhoA/Rock pathway; Tibetan miniature pigs; c-Myc; cytoskeleton reorganization; dermal fibroblasts; embryonic fibroblasts; mesenchymal stem cells; mesenchymal-epithelial transition (MET)

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for PubMed Central
Loading ...
Support Center