Send to

Choose Destination
J Mech Behav Biomed Mater. 2013 May;21:9-16. doi: 10.1016/j.jmbbm.2012.12.014. Epub 2013 Jan 23.

The relationships between femoral cortex geometry and tissue mechanical properties.

Author information

Bone and Joint Center, Henry Ford Hospital, Detroit, MI, USA.


Bone tissue and geometry are constantly modified through modeling and remodeling at the periosteal, endosteal and intracortical envelopes. Results from several studies indicate that femoral bone geometry is a predictor of whole bone strength (e.g. femoral neck strength), however, it is not known whether there is a relationship between bone structural and material properties. Bone geometry can be determined from parameters based on plane X-ray radiogrammetry which are used to evaluate femoral bone quality for implant success. If there is a relationship between these parameters and tissue mechanical properties, this would have implications in the interpretation of such parameters for assessment of fracture risk and in further understanding of bone biology. Following measurement of radiogrammetric parameters from antero-posterior and medio-lateral X-rays (cortical thickness, bone diameter, bone area, moment of inertia, cortical index, Singh index), human femurs were machined into standard test specimens for assessment of tensile fracture toughness (GIc) of the tissue. Results indicated that tensile fracture toughness generally increased with increasing bone size. We also found that fracture toughness of the tissue was significantly related to radiogrammetric indices and that some of these indices explained a greater variability in toughness than porosity, age or gender.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center