Send to

Choose Destination
Respir Physiol Neurobiol. 2013 May 1;186(3):285-9. doi: 10.1016/j.resp.2013.02.021. Epub 2013 Feb 27.

Neuronal nitric oxide synthase inhibition and regional sympathetic nerve discharge: implications for peripheral vascular control.

Author information

Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA.


Neuronal nitric oxide (NO) synthase (nNOS) inhibition with systemically administered S-methyl-l-thiocitrulline (SMTC) elevates mean arterial pressure (MAP) and reduces rat hindlimb skeletal muscle and renal blood flow. We tested the hypothesis that those SMTC-induced cardiovascular effects resulted, in part, from increased sympathetic nerve discharge (SND). MAP, HR, and lumbar and renal SND (direct nerve recordings) were measured in 9 baroreceptor (sino-aortic)-denervated rats for 20min each following both saline and SMTC (0.56mg/kg i.v.). SMTC increased MAP (peak ΔMAP: 50±8mmHg, p<0.01) compared to saline. Lumbar and renal SND were not different between saline and SMTC conditions at any time (p>0.05). The ΔSND between saline and SMTC conditions for the lumbar and renal nerves were not different from zero (peak ΔSND, lumbar: 2.0±6.8%; renal: 9.7±9.0%, p>0.05 versus zero for both). These data support that SMTC-induced reductions in skeletal muscle and renal blood flow reported previously reflect peripheral nNOS-derived NO vascular control as opposed to increased sympathetic vasoconstriction.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center