Format

Send to

Choose Destination
Annu Rev Plant Biol. 2013;64:531-58. doi: 10.1146/annurev-arplant-050312-120050. Epub 2013 Mar 1.

The endodermis.

Author information

1
Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland. niko.geldner@unil.ch

Abstract

A Casparian strip-bearing endodermis is a feature that has been invariably present in the roots of ferns and angiosperms for approximately 400 million years. As the innermost cortical layer that surrounds the central vasculature of roots, the endodermis acts as a barrier to the free diffusion of solutes from the soil into the stele. Based on an enormous body of anatomical and physiological work, the protective endodermal diffusion barrier is thought to be of major importance for many aspects of root biology, reaching from efficient water and nutrient transport to defense against soil-borne pathogens. Until recently, however, we were ignorant about the genes and mechanisms that drive the differentiation of this intricately structured barrier. Recent work in Arabidopsis has now identified the first major players in Casparian strip formation. A mechanistic understanding of endodermal differentiation will finally allow us to specifically interfere with endodermal barrier function and study the effects on plant growth and survival under various stress conditions. Here, I critically review the major findings and models related to endodermal structure and function from other plant species and assess them in light of recent molecular data from Arabidopsis, pointing out where the older, descriptive work can provide a framework and inspiration for further molecular dissection.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center