Format

Send to

Choose Destination
PLoS One. 2013;8(2):e57292. doi: 10.1371/journal.pone.0057292. Epub 2013 Feb 25.

Cellular targets of nitric oxide in the hippocampus.

Author information

1
The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.

Abstract

In the hippocampus, as in many other CNS areas, nitric oxide (NO) participates in synaptic plasticity, manifested as changes in pre- and/or postsynaptic function. While it is known that these changes are brought about by cGMP following activation of guanylyl cyclase-coupled NO receptors attempts to locate cGMP by immunocytochemistry in hippocampal slices in response to NO have failed to detect the cGMP elevation where expected, i.e. in the pyramidal neurones. Instead, astrocytes, unidentified varicose fibres and GABA-ergic nerve terminals are reported to be the prominent NO targets, raising the possibility that NO acts indirectly via other cells. We have re-investigated the distribution of cGMP generated in response to endogenous and exogenous NO in hippocampal slices using immunohistochemistry and new conditions designed to optimise cGMP accumulation and, hence, its detectability. The conditions included use of tissue from the developing rat hippocampus, a potent inhibitor of phosphodiesterase-2, and an allosteric enhancer of the NO-receptive guanylyl cyclase. Under these conditions, cGMP was formed in response to endogenous NO and was found in a population of pyramidal cell somata in area CA3 and subiculum as well as in structures described previously. The additional presence of exogenous NO resulted in hippocampal cGMP reaching the highest level recorded for brain tissue (1700 pmol/mg protein) and in cGMP immunolabelling throughout the pyramidal cell layer. Populations of axons and interneurones were also stained. According with these results, immunohistochemistry for the common NO receptor β1-subunit indicated widespread expression. A similar staining pattern for the α1-subunit with an antibody used previously in the hippocampus and elsewhere, however, proved to be artefactual. The results indicate that the targets of NO in the hippocampus are more varied and extensive than previous evidence had suggested and, in particular, that the pyramidal neurones participating in NO-dependent synaptic plasticity are direct NO targets.

PMID:
23451200
PMCID:
PMC3581475
DOI:
10.1371/journal.pone.0057292
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center