Format

Send to

Choose Destination
Hippocampus. 2013 Apr;23(4):253-67. doi: 10.1002/hipo.22101. Epub 2013 Feb 27.

Influence of local objects on hippocampal representations: Landmark vectors and memory.

Author information

1
Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218, USA. sachin@mail.mb.jhu.edu

Abstract

The hippocampus is thought to represent nonspatial information in the context of spatial information. An animal can derive both spatial information as well as nonspatial information from the objects (landmarks) it encounters as it moves around in an environment. In this article, correlates of both object-derived spatial as well as nonspatial information in the hippocampus of rats foraging in the presence of objects are demonstrated. A new form of CA1 place cells, called landmark-vector cells, that encode spatial locations as a vector relationship to local landmarks is described. Such landmark vector relationships can be dynamically encoded. Of the 26 CA1 neurons that developed new fields in the course of a day's recording sessions, in eight cases, the new fields were located at a similar distance and direction from a landmark as the initial field was located relative to a different landmark. In addition, object-location memory in the hippocampus is also described. When objects were removed from an environment or moved to new locations, a small number of neurons in CA1 and CA3 increased firing at the locations where the objects used to be. In some neurons, this increase occurred only in one location, indicating object + place conjunctive memory; in other neurons, the increase in firing was seen at multiple locations where an object used to be. Taken together, these results demonstrate that the spatially restricted firing of hippocampal neurons encode multiple types of information regarding the relationship between an animal's location and the location of objects in its environment.

KEYWORDS:

boundary vector cell; hippocampus; landmark; memory; objects

PMID:
23447419
PMCID:
PMC3869706
DOI:
10.1002/hipo.22101
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center