Format

Send to

Choose Destination
Stereotact Funct Neurosurg. 2013;91(3):141-7. doi: 10.1159/000345111. Epub 2013 Feb 27.

Wireless neurochemical monitoring in humans.

Author information

1
Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA.

Abstract

Electrochemical techniques have long been utilized to investigate chemical changes in the neuronal microenvironment. Preclinical models have demonstrated the successful monitoring of changes in various neurotransmitter systems in vivo with high temporal and spatial resolution. The expansion of electrochemical recording to humans is a critical yet challenging goal to elucidate various aspects of human neurophysiology and to create future therapies. We have designed a novel device named the WINCS (Wireless Instantaneous Neurotransmitter Concentration Sensing) system that combines rapid scan voltammetry with wireless telemetry for highly resolved electrochemical recording and analysis. WINCS utilizes fast-scan cyclic voltammetry and fixed potential amperometry for in vivo recording and has demonstrated high temporal and spatial resolution in detecting changes in extracellular levels of a wide range of analytes including dopamine, adenosine, glutamate, serotonin, and histamine. Neurochemical monitoring in humans represents a new approach to understanding the neurophysiology of the central nervous system, the neurobiology of numerous diseases, and the underlying mechanism of various neurosurgical therapies. This article addresses the current understanding of electrochemistry, its application in humans, and future directions.

PMID:
23445903
PMCID:
PMC3746013
DOI:
10.1159/000345111
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland Icon for PubMed Central
Loading ...
Support Center