Format

Send to

Choose Destination
See comment in PubMed Commons below
Sensors (Basel). 2012 Nov 23;12(12):16262-73. doi: 10.3390/s121216262.

Pattern recognition for selective odor detection with gas sensor arrays.

Author information

1
Environment Sensor System Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 136-791, Korea. eungyeong@kist.re.kr

Abstract

This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals.

PMID:
23443378
PMCID:
PMC3571782
DOI:
10.3390/s121216262
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
    Loading ...
    Support Center