Send to

Choose Destination
See comment in PubMed Commons below
Biomed J. 2012 Nov-Dec;35(6):464-72. doi: 10.4103/2319-4170.104411.

Cancer cells acquire resistance to anticancer drugs: an update.

Author information

Department of Biochemistry and Molecular Biology, and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.


The efficacy of cancer chemotherapy is often affected by the emergence of resistant can-cer cells. While biochemical and pharmaco-logical mechanisms have been proposed to ex-plain chemo-resistance, the genes involved in this process have not been fully identified. We previously used genomic DNA microarrays and quantitative RT-PCR to identify the genes associated with resistance to chemotherapeutic drugs, particularly to the genotoxic agent cisplatin. Notably, knockdown of the cisplatin resistance (CPR) genes that we identified was shown to reduce chemoresistance and to suppress the growth of tumor xenographs in cisplatin-treated mice, indicating that the newly identified CPR genes may represent potential therapy candidates to limit chemo-resistance and to improve the efficacy of anticancer drugs. In addition to genetic mutations, re-searchers have found that epigenetic changes and alternative splicing of specific genes may also allow cancer cells to become resistant to chemotherapeutic drugs. In this article, the authors present an overview of the latest findings in this field, including genetic changes, epigenetic changes and alternative splicing.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Chang Gung Medical Hospital
    Loading ...
    Support Center