Format

Send to

Choose Destination
Antioxid Redox Signal. 2013 Jun 1;18(16):2087-90. doi: 10.1089/ars.2013.5278. Epub 2013 Mar 28.

Redox signaling in plants.

Author information

1
Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, United Kingdom. c.foyer@leeds.ac.uk

Abstract

Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

PMID:
23442120
DOI:
10.1089/ars.2013.5278
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center