Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013;8(2):e56697. doi: 10.1371/journal.pone.0056697. Epub 2013 Feb 20.

Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L.

Author information

Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.


The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. In this study, we cloned an ABA receptor orthologue, AaPYL9, from Artemisia annua L. AaPYL9 is expressed highly in leaf and flower. AaPYL9 protein can be localized in both nucleus and cytoplasm. Yeast two-hybrid assay shows AaPYL9 can specifically interact with AtABI1 but not with AtABI2, AtHAB1 or AtHAB2. ABA can enhance the interaction between AaPYL9 and AtABI1 while AaPYL9-89 Pro→Ser and AaPYL9-116 His→Ala point mutations abolishes the interaction. BiFC assay shows that AaPYL9 interacts with AtABI1 in nucleus in planta. Transgenic Arabidopsis plants over-expressing AaPYL9 are more sensitive to ABA in the seed germination and primary root growth than wild type. Consistent with this, ABA report genes have higher expression in AaPYL9 overexpressing plants compared to wild type after ABA treatment. Moreover, overexpression of AaPYL9 in A. annua increases not only drought tolerance, but also artemisinin content after ABA treatment, with significant enhancement of the expression of key genes in artemisinin biosynthesis. This study provides a way to develop A. annua with high-yielding artemisinin and high drought resistance.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center