Format

Send to

Choose Destination
PLoS One. 2013;8(2):e56393. doi: 10.1371/journal.pone.0056393. Epub 2013 Feb 20.

Propulsion in cubomedusae: mechanisms and utility.

Author information

1
Marine Biology and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA. scolin@rwu.edu

Abstract

Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.

PMID:
23437122
PMCID:
PMC3577916
DOI:
10.1371/journal.pone.0056393
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center