Send to

Choose Destination
J Immunol. 2013 Apr 1;190(7):3687-95. doi: 10.4049/jimmunol.1203273. Epub 2013 Feb 22.

1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages.

Author information

Division of Biological Sciences, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.


The negative feedback mechanism is essential to maintain effective immunity and tissue homeostasis. 1,25-dihydroxyvitamin D (1,25[OH]2D3) modulates innate immune response, but the mechanism remains poorly understood. In this article, we report that vitamin D receptor signaling attenuates TLR-mediated inflammation by enhancing the negative feedback inhibition. Vitamin D receptor inactivation leads to hyperinflammatory response in mice and macrophage cultures when challenged with LPS, because of microRNA-155 (miR-155) overproduction that excessively suppresses suppressor of cytokine signaling 1, a key regulator that enhances the negative feedback loop. Deletion of miR-155 attenuates vitamin D suppression of LPS-induced inflammation, confirming that 1,25(OH)2D3 stimulates suppressor of cytokine signaling 1 by downregulating miR-155. 1,25(OH)2D3 downregulates bic transcription by inhibiting NF-κB activation, which is mediated by a κB cis-DNA element located within the first intron of the bic gene. Together, these data identify a novel regulatory mechanism for vitamin D to control innate immunity.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Secondary source ID, Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center