Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2013 Apr 1;190(7):3590-9. doi: 10.4049/jimmunol.1200860. Epub 2013 Feb 22.

Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury.

Author information

Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612, USA.


Mechanical ventilation of lungs is capable of activating the innate immune system and inducing sterile inflammatory response. The proinflammatory cytokine IL-1β is among the definitive markers for accurately identifying ventilator-induced lung inflammation. However, mechanisms of IL-1β release during mechanical ventilation are unknown. In this study, we show that cyclic stretch activates the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasomes and induces the release of IL-1β in mouse alveolar macrophages via caspase-1- and TLR4-dependent mechanisms. We also observed that NADPH oxidase subunit gp91(phox) was dispensable for stretch-induced cytokine production, whereas mitochondrial generation of reactive oxygen species was required for stretch-induced NLRP3 inflammasome activation and IL-1β release. Further, mechanical ventilation activated the NLRP3 inflammasomes in mouse alveolar macrophages and increased the production of IL-1β in vivo. IL-1β neutralization significantly reduced mechanical ventilation-induced inflammatory lung injury. These findings suggest that the alveolar macrophage NLRP3 inflammasome may sense lung alveolar stretch to induce the release of IL-1β and hence may contribute to the mechanism of lung inflammatory injury during mechanical ventilation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center