The utilization of stored RNA is a driving force in rapid development. Here, we show that retention and subsequent removal of introns from pre-mRNAs regulate temporal patterns of translation during rapid and posttranscriptionally controlled spermatogenesis of the fern Marsilea vestita. Analysis of RNAseq-derived transcriptomes revealed a large subset of intron-retaining transcripts (IRTs) that encode proteins essential for gamete development. Genomic and IRT sequence comparisons show that other introns have been previously removed from the IRT pre-mRNAs. Fully spliced isoforms appear at distinct times during development in a spliceosome-dependent and transcription-independent manner. RNA interference knockdowns of 17/17 IRTs produced anomalies after the time points when those transcripts would normally be spliced. Intron retention is a functional mechanism for forestalling precocious translation of transcripts in the male gametophyte of M. vestita. These results have broad implications for plant gene regulation, where intron retention is widespread.
Copyright © 2013 Elsevier Inc. All rights reserved.