Format

Send to

Choose Destination
See comment in PubMed Commons below
Antioxid Redox Signal. 2013 Jul 20;19(3):240-2. doi: 10.1089/ars.2013.5255. Epub 2013 Mar 28.

Mitochondria and metabolic homeostasis.

Author information

  • 1Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Science, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia 24061, USA. zcheng@vt.edu

Abstract

Mitochondrial function is fundamental to metabolic homeostasis. In addition to converting the nutrient flux into the energy molecule ATP, the mitochondria generate intermediates for biosynthesis and reactive oxygen species (ROS) that serve as a secondary messenger to mediate signal transduction and metabolism. Alterations of mitochondrial function, dynamics, and biogenesis have been observed in various metabolic disorders, including aging, cancer, diabetes, and obesity. However, the mechanisms responsible for mitochondrial changes and the pathways leading to metabolic disorders remain to be defined. In the last few years, tremendous efforts have been devoted to addressing these complex questions and led to a significant progress. In a timely manner, the Forum on Mitochondria and Metabolic Homeostasis intends to document the latest findings in both the original research article and review articles, with the focus on addressing three major complex issues: (1) mitochondria and mitochondrial oxidants in aging-the oxidant theory (including mitochondrial ROS) being revisited by a hyperfunction hypothesis and a novel role of SMRT in mitochondrion-mediated aging process being discussed; (2) impaired mitochondrial capacity (e.g., fatty acid oxidation and oxidative phosphorylation [OXPHOS] for ATP synthesis) and plasticity (e.g., the response to endocrine and metabolic challenges, and to calorie restriction) in diabetes and obesity; (3) mitochondrial energy adaption in cancer progression-a new view being provided for H(+)-ATP synthase in regulating cell cycle and proliferation by mediating mitochondrial OXPHOS, oxidant production, and cell death signaling. It is anticipated that this timely Forum will advance our understanding of mitochondrial dysfunction in metabolic disorders.

PMID:
23432475
DOI:
10.1089/ars.2013.5255
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center