Format

Send to

Choose Destination
See comment in PubMed Commons below
Ying Yong Sheng Tai Xue Bao. 2012 Nov;23(11):3173-9.

[Reconstruction of urban land space based on minimum cumulative resistance model: a case study of Xintang Town, Guangzhou City].

[Article in Chinese]

Author information

  • 1School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China. jxzhshy@126.com

Abstract

Based on the source-sink landscape theory and the principles of ecosystem services, the minimum cumulative resistance (MCR) model was modified, where the urban center construction land was taken as the expansion source, and the contribution rate of ecological land ecosystem services value was considered as the resistance coefficient. With the modified MCR, the urban spatial expansion process of Xintang Town, Guangzhou City was successfully simulated, and, based on the protection of ecological security pattern, the optimum path for reconstructing urban land space was put forward. The simulated urban spatial expansion short path in 1988-2008 was in accordance with the real situation. By the modified MCR, the urban space was divided into four zones of high, higher, medium, and low resistance, with the area of 80.84, 78.90, 24.26, and 61.88 km2, respectively. The expansion path of the urban space was along the route from low to medium and then to high resistance zones successively. The land suitable for eco-protection and construction had an area of 159.74 km2 and 86.14 km2, while the ecological conflict area (17.37 km2) was mainly located in higher and high resistance zones, being 10.38 and 6.99 km2, respectively. The modified MCR could not only effectively reflect the distribution area of urban land use and the conflict relationship between urban construction and ecological protection, but also reasonably judge the best developmental short path for urban spatial expansion.

PMID:
23431806
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center