Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2013 Jun 1;216(Pt 11):2089-96. doi: 10.1242/jeb.078782. Epub 2013 Feb 21.

Insect herbivores can choose microclimates to achieve nutritional homeostasis.

Author information

School of Biological Sciences, The University of Sydney, New South Wales, 2006, Australia.


The interaction between temperature and diet quality can affect the life history of ectotherms. The rate and ratio at which protein and carbohydrate are obtained from food are important aspects of diet quality, and insects have a well-developed capacity to adjust their feeding behaviour and post-ingestive physiology to regulate intake and allocation of these nutrients. If the supply of protein and carbohydrate varies with temperature (e.g. via effects on intake, digestion or metabolism), then herbivorous insects can use thermoregulatory behaviour to help achieve nutritional homeostasis. When fed the host grass Triticum aestivum, Locusta migratoria nymphs absorbed and allocated protein and carbohydrate to growth with the same efficiency at 38°C as at 32°C; however, at the higher temperature, they ingested more food. In contrast, when feeding on Themeda triandra, the nymphs absorbed carbohydrate with higher efficiency at 32°C, and protein at 38°C. Using synthetic diets, we induced either a protein or a carbohydrate deficiency in experimental insects and showed that locusts placed in a thermal gradient following a meal of T. triandra selected 32°C when deprived of carbohydrate, and 38°C when deprived of protein. This capacity to use thermoregulatory behaviour to redress an imposed nutritional imbalance improved with experience of feeding on T. triandra. As predicted, locusts fed T. aestivum always chose higher temperatures, irrespective of nutritional state. Our results have consequences for understanding host-plant choice by herbivores and interpreting the effects of changed environmental temperatures and microclimate on animal-plant interactions.


behavioural plasticity; dynamic thermoregulatory behaviour; learning; nutrient balance

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center