Send to

Choose Destination
Chromosome Res. 2013 Mar;21(1):75-85. doi: 10.1007/s10577-013-9339-y. Epub 2013 Feb 21.

An assessment of karyotype restructuring in the neoallotetraploid Tragopogon miscellus (Asteraceae).

Author information

Department of Biology, University of Florida, Gainesville, FL 32611, USA.


Tragopogon miscellus and Tragopogon mirus are two rare examples of allopolyploids that have formed recently in nature. Molecular cytogenetic studies have revealed chromosome copy number variation and intergenomic translocations in both allotetraploids. Due to a lack of interstitial chromosome markers, there remained the possibility of additional karyotype restructuring in these neopolyploids, via intrachromosomal and intragenomic rearrangements. To address this issue, we searched for additional high-copy tandem repeats in genomic sequences of the diploid progenitor species-Tragopogon dubius, Tragopogon pratensis and Tragopogon porrifolius-for application to the chromosomes of the allotetraploids. Eight novel repeats were localised by fluorescence in situ hybridisation (FISH) in the diploids; one of these repeats, TTR3, provided interstitial coverage. TTR3 was included in a cocktail with other previously characterised probes, producing better-resolved karyotypes for the three diploids. The cocktail was then used to test a hypothesis of karyotype restructuring in the recent allotetraploid T. miscellus by comparing repeat distributions to its diploid progenitors, T. dubius and T. pratensis. Five individuals of T. miscellus were selected from across the range of karyotypic variation previously observed in natural populations. FISH signal distributions mostly matched those observed in the diploid progenitors, with the exception of several losses or gains of signal at chromosomal subtermini and previously noted intergenomic translocations. Thus, in T. miscellus, we find most changes restricted to the subterminal regions, and although some were recurrent, none of the changes were common to all individuals analysed. We consider these findings in relation to the gene loss reported previously for T. miscellus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center