Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurology. 2013 Mar 19;80(12):1110-6. doi: 10.1212/WNL.0b013e3182886a0e. Epub 2013 Feb 20.

Bumetanide prevents transient decreases in muscle force in murine hypokalemic periodic paralysis.

Author information

1
Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.

Abstract

OBJECTIVE:

To test the hypothesis that inhibition of the Na-K-2Cl transporter with bumetanide will reduce the susceptibility to decreases in muscle force in a mouse model of hypokalemic periodic paralysis (HypoPP).

METHODS:

In vitro contraction tests were performed on soleus muscle isolated from mice with knock-in missense mutations that result in HypoPP (sodium channel NaV1.4-R669H) or hyperkalemic periodic paralysis (HyperPP; sodium channel NaV1.4-M1592V).

RESULTS:

Bumetanide prevented the development of weakness in 2 mM K(+) and also restored force during an established attack of HypoPP. Stimulation of the Na-K-2Cl transporter via induction of hyperosmolality exacerbated the weakness seen in low K(+) and was also prevented by bumetanide. Bumetanide was more efficacious than acetazolamide for preventing weakness in low K(+) conditions. Decreases in force in HyperPP muscle exposed to 10 mM K(+) were not prevented by treatment with bumetanide.

CONCLUSIONS:

The Na-K-2Cl inhibitor bumetanide was highly effective in preventing attacks of weakness in the NaV1.4-R669H mouse model of HypoPP and should be considered for management of patients with HypoPP due to sodium channel mutations. Dehydration may aggravate HypoPP by stimulating the Na-K-2Cl transporter.

PMID:
23427324
PMCID:
PMC3662304
DOI:
10.1212/WNL.0b013e3182886a0e
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center