Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biochem. 2013 May;153(5):473-81. doi: 10.1093/jb/mvt012. Epub 2013 Feb 19.

MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.

Author information

1
Laboratory of Structural and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.

Abstract

The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.

PMID:
23423459
DOI:
10.1093/jb/mvt012
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center