Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Pharm. 2013 Mar 25;446(1-2):136-44. doi: 10.1016/j.ijpharm.2013.02.029. Epub 2013 Feb 16.

Formulation of lipid bearing pellets as a delivery system for poorly soluble drugs.

Author information

1
Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.

Abstract

The aim of this study was to develop and characterize phospholipid bearing pellets for a poorly water-soluble drug, nisoldipine. Pellets were prepared using extrusion-spheronization technique containing microcrystalline cellulose, soy phosphatidylcholine (SPC), granulating fluid and lactose. Operational parameters such as extrusion speed, spheronization speed and residence time were evaluated. Optimal extrusion speed was found to be 50 rpm with a spheronization speed of 60 Hz and residence time of 2 min. Pellets were characterized for their size, shape, density, flow properties, friability, moisture content, surface morphology and thermal properties. Pellets were evaluated for their assay and in vitro drug release. Mathematical modeling was used to determine the release patterns of the pellets. Pellets were found to be spherical, 600-850 μm size with <0.01% friability and had >70% yield. Scanning electron microscopic (SEM) studies showed a smoother external surface and a porous internal matrix. SPC incorporated pellets resulted in improved dissolution of the drug. Pellets with SPC (20 and 30%) released >90% of the drug within 24 h. The dissolution profiles of the pellets were best fitted to Korsmeyer-Peppas kinetic model. In this study, we could successfully incorporate a lipid and a water-insoluble drug into a pellet formulation with improved dissolution profile.

PMID:
23422274
DOI:
10.1016/j.ijpharm.2013.02.029
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center