Format

Send to

Choose Destination
See comment in PubMed Commons below
Biotechnol J. 2013 Apr;8(4):496-501. doi: 10.1002/biot.201200204. Epub 2013 Mar 7.

A screening approach reveals the influence of mineral coating morphology on human mesenchymal stem cell differentiation.

Author information

1
Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, USA.

Abstract

"Biomimetic" inorganic coating on biomaterials has been an active area of research with the aim of providing bioactive surfaces that can regulate cell behavior. Previous studies have demonstrated that human mesenchymal stem cell (hMSC) behavior is differentially regulated by the physical and chemical properties of inorganic mineral coatings, indicating that modulation of mineral properties is potentially important in regulating hMSC behavior. However, the lack of an efficient experimental context, in which to study stem cell behavior on inorganic substrates, has made it difficult to systematically study the effects of specific mineral coating parameters on hMSC behavior. In this study, we developed an efficient experimental platform to screen for the effects of mineral coating morphology on hMSC expansion and differentiation. hMSC expansion on mineral coatings was regulated by the micro-scale morphology of these coatings, with greater expansion on small granule-like coatings when compared to plate-like or net-like coatings. In contrast, hMSC osteogenic differentiation was inversely correlated with cell expansion on mineral coatings indicating that mineral coating morphology was a key parameter that regulates hMSC differentiation. The effect of mineral coating morphology on hMSC behavior underlines the utility of this inorganic screening platform to identify optimal coatings for medical devices and bone tissue engineering applications.

PMID:
23420758
PMCID:
PMC3830421
DOI:
10.1002/biot.201200204
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center