Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Biosyst. 2013 Apr 5;9(4):768-79. doi: 10.1039/c3mb25591c.

Predicting drug-target interactions through integrative analysis of chemogenetic assays in yeast.

Author information

1
Biomathematics Research Group, Department of Mathematics, University of Turku, FI-20014, Finland.

Abstract

Chemical-genomic and genetic interaction profiling approaches are widely used to study mechanisms of drug action and resistance. However, there exist a number of scoring algorithms customized to different experimental assays, the relative performance of which remains poorly understood, especially with respect to different types of chemogenetic assays. Using yeast Saccharomyces cerevisiae as a test bed, we carried out a systematic evaluation among the main drug target analysis approaches in terms of predicting global drug-target interaction networks. We found drastic differences in their performance across different chemical-genomic assay types, such as those based on heterozygous and homozygous diploid or haploid deletion mutant libraries. Moreover, a relatively small overlap in the predicted targets was observed between those approaches that use either chemical-genomic screening alone or combined with genetic interaction profiling. A rank-based integration of the complementary scoring approaches led to improved overall performance, demonstrating that genetic interaction profiling provides added information on drug target prediction. Optimal performance was achieved when focusing specifically on the negative tail of the genetic interactions, suggesting that combining synthetic lethal interactions with chemical-genetic interactions provides highest information on drug-target interactions. A network view of rapamycin-interacting genes, pathways and complexes was used as an example to demonstrate the benefits of such integrated and optimized analysis of chemogenetic assays in yeast.

PMID:
23420501
DOI:
10.1039/c3mb25591c
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center