Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2013 Apr 15;73(8):2493-504. doi: 10.1158/0008-5472.CAN-12-4241. Epub 2013 Feb 15.

Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity.

Author information

1
Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.

Abstract

Multiple classes of pharmacologic agents have the potential to induce the expression and release of proinflammatory factors from dying tumor cells. As a result, these cells can in theory elicit an immune response through various defined mechanisms to permanently eradicate disseminated cancer. However, the impact of chemotherapy on the tumor-specific immune response in the context of the tumor microenvironment is largely unknown. Within the tumor microenvironment, the immune response promoted by chemotherapy is antagonized by an immune-suppressive milieu, and the balance of these opposing forces dictates the clinical course of disease. Here, we report that high antigen exposure within the tumor microenvironment following chemotherapy is sufficient to skew this balance in favor of a productive immune response. In elevating antigen exposure, chemotherapy can achieve long-term control of tumor progression without the need of an additional adjuvant. We found that chemotherapy initiated this phenomenon in the tumor microenvironment through an accumulation of dendritic cells, which stimulated CD8(+) T cells and the type I IFN pathway. From this conceptual base, we developed a simple approach to cancer therapy combining chemotherapy and vaccination that may be widely applicable.

PMID:
23418322
PMCID:
PMC3630272
DOI:
10.1158/0008-5472.CAN-12-4241
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center