Relationship between bradykinin-induced relaxation and endogenous epoxyeicosanoid synthesis in human bronchi

Am J Physiol Lung Cell Mol Physiol. 2013 Apr 15;304(8):L562-9. doi: 10.1152/ajplung.00379.2012. Epub 2013 Feb 15.

Abstract

Epoxyeicosanoids (EETs) are produced by cytochrome P-450 epoxygenase; however, it is not yet known what triggers their endogenous production in epithelial cells. The relaxing effects of bradykinin are known to be related to endogenous production of epithelial-derived hyperpolarizing factors (EpDHF). Because of their effects on membrane potential, EETs have been reported to be EpDHF candidates (Benoit C, Renaudon B, Salvail D, Rousseau E. Am J Physiol Lung Cell Mol Physiol 280: L965-L973, 2001.). Thus, we hypothesized that bradykinin (BK) may stimulate endogenous EET production in human bronchi. To test this hypothesis, the relaxing and hyperpolarizing effects of BK and 14,15-EET were quantified on human bronchi, as well as the effects of various enzymatic inhibitors on these actions. One micromolar BK or 1 μM 14,15-EET induced a 45% relaxation on the tension induced by 30 nM U-46619 [a thromboxane-prostanoid (TP)-receptor agonist]. These BK-relaxing effects were reduced by 42% upon addition of 10 nM iberiotoxin [a large-conductance Ca(2+)-sensitive K(+) (BK(Ca)) channel blocker], by 27% following addition of 3 μM 14,15-epoxyeicosa-5(Z)-enoic acid (an EET antagonist), and by 32% with 3 μM N-methanesulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH, an epoxygenase inhibitor). Hence, BK and 14,15-EET display net hyperpolarizing effects on airway smooth muscle cells that are related to the activation of BK(Ca) channels and ultimately yielding to relaxation. Data also indicate that 3 μM MS-PPOH reduced the hyperpolarizing effects of BK by 43%. Together, the present data support the current hypothesis suggesting a direct relationship between BK and the production of EET regioisomers. Because of its potent anti-inflammatory and relaxing properties, epoxyeicosanoid signaling may represent a promising target in asthma and chronic obstructive pulmonary disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid / pharmacology
  • 8,11,14-Eicosatrienoic Acid / administration & dosage
  • 8,11,14-Eicosatrienoic Acid / analogs & derivatives
  • 8,11,14-Eicosatrienoic Acid / pharmacology
  • Amides / pharmacology
  • Bradykinin / administration & dosage
  • Bradykinin / pharmacology*
  • Bronchi / drug effects*
  • Bronchi / physiology*
  • Dose-Response Relationship, Drug
  • Eicosanoids / biosynthesis*
  • Humans
  • In Vitro Techniques
  • Membrane Potentials / drug effects
  • Muscle Relaxation / drug effects
  • Muscle Relaxation / physiology
  • Respiratory Muscles / drug effects
  • Respiratory Muscles / physiology

Substances

  • Amides
  • Eicosanoids
  • N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide
  • 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
  • 14,15-epoxy-5,8,11-eicosatrienoic acid
  • 8,11,14-Eicosatrienoic Acid
  • Bradykinin