Format

Send to

Choose Destination
See comment in PubMed Commons below
Nanoscale Res Lett. 2013 Feb 15;8(1):76. doi: 10.1186/1556-276X-8-76.

Thin film deposition of metal oxides in resistance switching devices: electrode material dependence of resistance switching in manganite films.

Author information

1
Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. tosihiro@kuee.kyoto-u.ac.jp.

Abstract

The electric-pulse-induced resistance switching in layered structures composed of polycrystalline Pr1-xCaxMnO3 (PCMO) sandwiched between Pt bottom electrode and top electrodes of various metals (metal/PCMO/Pt) was studied by direct current current-voltage (I-V) measurements and alternating current impedance spectroscopy. The I-V characteristics showed nonlinear, asymmetric, and hysteretic behavior in PCMO-based devices with top electrode of Al, Ni, and Ag, while no hysteretic behavior was observed in Au/PCMO/Pt devices. The PCMO-based devices with hysteretic I-V curves exhibited an electric-pulse-induced resistance switching between high and low resistance states. Impedance spectroscopy was employed to study the origin of the resistance switching. From comparison of the impedance spectra between the high and low resistance states, the resistance switching in the PCMO-based devices was mainly due to the resistance change in the interface between the film and the electrode. The electronic properties of the devices showed stronger correlation with the oxidation Gibbs free energy than with the work function of the electrode metal, which suggests that the interface impedance is due to an interfacial oxide layer of the electrode metal. The interface component observed by impedance spectroscopy in the Al/PCMO/Pt device might be due to Al oxide layer formed by oxidation of Al top electrode. It is considered that the interfacial oxide layer plays a dominant role in the bipolar resistance switching in manganite film-based devices.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center