Format

Send to

Choose Destination
BMC Bioinformatics. 2013 Feb 14;14:53. doi: 10.1186/1471-2105-14-53.

STOP using just GO: a multi-ontology hypothesis generation tool for high throughput experimentation.

Author information

1
Buck Institute for Research on Aging, Novato, CA, USA.

Abstract

BACKGROUND:

Gene Ontology (GO) enrichment analysis remains one of the most common methods for hypothesis generation from high throughput datasets. However, we believe that researchers strive to test other hypotheses that fall outside of GO. Here, we developed and evaluated a tool for hypothesis generation from gene or protein lists using ontological concepts present in manually curated text that describes those genes and proteins.

RESULTS:

As a consequence we have developed the method Statistical Tracking of Ontological Phrases (STOP) that expands the realm of testable hypotheses in gene set enrichment analyses by integrating automated annotations of genes to terms from over 200 biomedical ontologies. While not as precise as manually curated terms, we find that the additional enriched concepts have value when coupled with traditional enrichment analyses using curated terms.

CONCLUSION:

Multiple ontologies have been developed for gene and protein annotation, by using a dataset of both manually curated GO terms and automatically recognized concepts from curated text we can expand the realm of hypotheses that can be discovered. The web application STOP is available at http://mooneygroup.org/stop/.

PMID:
23409969
PMCID:
PMC3635999
DOI:
10.1186/1471-2105-14-53
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center