Format

Send to

Choose Destination
See comment in PubMed Commons below
J Vis Exp. 2013 Feb 1;(72):e50156. doi: 10.3791/50156.

Identification of Sleeping Beauty transposon insertions in solid tumors using linker-mediated PCR.

Author information

1
Department of Obstetrics, Gynecology & Women's Health, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

Abstract

Genomic, proteomic, transcriptomic, and epigenomic analyses of human tumors indicate that there are thousands of anomalies within each cancer genome compared to matched normal tissue. Based on these analyses it is evident that there are many undiscovered genetic drivers of cancer(1). Unfortunately these drivers are hidden within a much larger number of passenger anomalies in the genome that do not directly contribute to tumor formation. Another aspect of the cancer genome is that there is considerable genetic heterogeneity within similar tumor types. Each tumor can harbor different mutations that provide a selective advantage for tumor formation(2). Performing an unbiased forward genetic screen in mice provides the tools to generate tumors and analyze their genetic composition, while reducing the background of passenger mutations. The Sleeping Beauty (SB) transposon system is one such method(3). The SB system utilizes mobile vectors (transposons) that can be inserted throughout the genome by the transposase enzyme. Mutations are limited to a specific cell type through the use of a conditional transposase allele that is activated by Cre Recombinase. Many mouse lines exist that express Cre Recombinase in specific tissues. By crossing one of these lines to the conditional transposase allele (e.g. Lox-stop-Lox-SB11), the SB system is activated only in cells that express Cre Recombinase. The Cre Recombinase will excise a stop cassette that blocks expression of the transposase allele, thereby activating transposon mutagenesis within the designated cell type. An SB screen is initiated by breeding three strains of transgenic mice so that the experimental mice carry a conditional transposase allele, a concatamer of transposons, and a tissue-specific Cre Recombinase allele. These mice are allowed to age until tumors form and they become moribund. The mice are then necropsied and genomic DNA is isolated from the tumors. Next, the genomic DNA is subjected to linker-mediated-PCR (LM-PCR) that results in amplification of genomic loci containing an SB transposon. LM-PCR performed on a single tumor will result in hundreds of distinct amplicons representing the hundreds of genomic loci containing transposon insertions in a single tumor(4). The transposon insertions in all tumors are analyzed and common insertion sites (CISs) are identified using an appropriate statistical method(5). Genes within the CIS are highly likely to be oncogenes or tumor suppressor genes, and are considered candidate cancer genes. The advantages of using the SB system to identify candidate cancer genes are: 1) the transposon can easily be located in the genome because its sequence is known, 2) transposition can be directed to almost any cell type and 3) the transposon is capable of introducing both gain- and loss-of-function mutations(6). The following protocol describes how to devise and execute a forward genetic screen using the SB transposon system to identify candidate cancer genes (Figure 1).

PMID:
23407503
PMCID:
PMC3596955
DOI:
10.3791/50156
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for MyJove Corporation Icon for PubMed Central
    Loading ...
    Support Center