Send to

Choose Destination
PLoS One. 2013;8(2):e55148. doi: 10.1371/journal.pone.0055148. Epub 2013 Feb 6.

Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre.

Author information

College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China.


Surface seawater in the South Pacific Gyre (SPG) is one of the cleanest oceanic environments on earth, and the photosynthetic primary production is extremely low. Despite the ecological significance of the largest aquatic desert on our planet, microbial community composition in the ultra-oligotrophic seawater remain largely unknown. In this study, we collected surface seawater along a southern transect of the SPG during the Integrated Ocean Drilling Program (IODP) Expedition 329. Samples from four distinct sites (Sites U1368, U1369, U1370 and U1371) were examined, representing ~5400 kilometers of transect line from the gyre heart to the edge area. Real-time PCR analysis showed 16S rRNA gene abundance in the gyre seawater, ranging from 5.96×10(5) to 2.55×10(6) copies ml(-1) for Bacteria and 1.17×10(3) to 1.90×10(4) copies ml(-1) for Archaea. The results obtained by statistic analyses of 16S rRNA gene clone libraries revealed the community composition in the southern SPG area: diversity richness estimators in the gyre center (Sites U1368 & U1369) are generally lower than those at sites in the gyre edge (Sites U1370 & U1371) and their community structures are clearly distinguishable. Phylogenetic analysis showed the predominance of Proteobacteria (especially Alphaproteobacteria) and Cyanobacteria in bacterial 16S rRNA gene clone libraries, whereas phylotypes of Betaproteobacteria were only detected in the central gyre. Archaeal 16S rRNA genes in the clone libraries were predominated by the sequences of Marine Group II within the Euryarchaeota, and the Crenarchaeota sequences were rarely detected, which is consistent with the real-time PCR data (only 9.9 to 22.1 copies ml(-1)). We also performed cultivation of heterotrophic microbes onboard, resulting in 18.9% of phylogenetically distinct bacterial isolates at least at the species level. Our results suggest that the distribution and diversity of microbial communities in the SPG surface seawater are closely related to the ultra-oligotrophic oceanographic features in the Pacific Ocean.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center