Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):E848-57. doi: 10.1073/pnas.1222538110. Epub 2013 Feb 11.

Coupling mutagenesis and parallel deep sequencing to probe essential residues in a genome or gene.

Author information

1
Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.

Abstract

The sequence of a protein determines its function by influencing its folding, structure, and activity. Similarly, the most conserved residues of orthologous and paralogous proteins likely define those most important. The detection of important or essential residues is not always apparent via sequence alignments because these are limited by the depth of any given gene's phylogeny, as well as specificities that relate to each protein's unique biological origin. Thus, there is a need for robust and comprehensive ways of evaluating the importance of specific amino acid residues of proteins of known or unknown function. Here we describe an approach called Mut-seq, which allows the identification of virtually all of the essential residues present in a whole genome through the application of limited chemical mutagenesis, selection for function, and deep parallel genomic sequencing. Here we have applied this method to T7 bacteriophage and T7-like virus JSF7 of Vibrio cholerae.

PMID:
23401533
PMCID:
PMC3587248
DOI:
10.1073/pnas.1222538110
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center