Format

Send to

Choose Destination
See comment in PubMed Commons below
Aquat Toxicol. 2013 Apr 15;130-131:139-48. doi: 10.1016/j.aquatox.2012.12.022. Epub 2013 Jan 8.

Specific time of exposure during tadpole development influences biological effects of the insecticide carbaryl in green frogs (Lithobates clamitans).

Author information

  • 1Department of Zoology, Miami University, Oxford, OH 45056, USA. boonemd@muohio.edu

Abstract

The orchestration of anuran metamorphosis is initiated and integrated by thyroid hormones, which change dynamically during larval development and which may represent a target of disruption by environmental contaminants. Studies have found that some anurans experience increased rates of development when exposed to the insecticide carbaryl later in larval development, suggesting that this insecticide could affect thyroid hormone-associated biological pathways. However, the time in development when tadpoles are sensitive to insecticide exposure has not been clearly defined nor has the mechanism been tested. In two separate studies, we exposed recently hatched green frog (Lithobates clamitans) tadpoles to a single, three day carbaryl exposure in the laboratory at either 2, 4, 8, or 16 weeks post-hatching. We examined the impact of carbaryl exposure on mRNA abundance patterns in the brains of frogs following metamorphosis months after a single three day exposure (experiment 1) and in tadpole tails three days after exposure (experiment 2) using cDNA microarrays and quantitative real time polymerase chain reaction (QPCR) analyses. For tadpoles reared through metamorphosis, we measured tadpole growth and development, as well as time to, mass at, and survival to metamorphosis. Although carbaryl did not significantly impact tadpole development, metamorphosis, or survival, clear exposure-related alterations in both tail and brain transcript levels were evident when tadpoles were exposed to carbaryl, particularly in tadpoles exposed at weeks 8 and 16 post-hatching, indicating both short-term and long-term alterations in mRNA expression. These results indicate that carbaryl can have long-lasting effects on brain development when exposure occurs at sensitive developmental stages, which may have implications for animal fitness and function later in the life cycle.

Published by Elsevier B.V.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk