Format

Send to

Choose Destination
See comment in PubMed Commons below
J Thorac Cardiovasc Surg. 2013 Jun;145(6):1654-9. doi: 10.1016/j.jtcvs.2013.01.006. Epub 2013 Feb 8.

Adenosine A1 receptor activation attenuates lung ischemia-reperfusion injury.

Author information

1
Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA.

Abstract

OBJECTIVES:

Ischemia-reperfusion injury contributes significantly to morbidity and mortality in lung transplant patients. Currently, no therapeutic agents are clinically available to prevent ischemia-reperfusion injury, and treatment strategies are limited to maintaining oxygenation and lung function. Adenosine can modulate inflammatory activity and injury by binding to various adenosine receptors; however, the role of the adenosine A1 receptor in ischemia-reperfusion injury and inflammation is not well understood. The present study tested the hypothesis that selective, exogenous activation of the A1 receptor would be anti-inflammatory and attenuate lung ischemia-reperfusion injury.

METHODS:

Wild-type and A1 receptor knockout mice underwent 1 hour of left lung ischemia and 2 hours of reperfusion using an in vivo hilar clamp model. An A1 receptor agonist, 2-chloro-N6-cyclopentyladenosine, was administered 5 minutes before ischemia. After reperfusion, lung function was evaluated by measuring airway resistance, pulmonary compliance, and pulmonary artery pressure. The wet/dry weight ratio was used to assess edema. The myeloperoxidase and cytokine levels in bronchoalveolar lavage fluid were measured to determine the presence of neutrophil infiltration and inflammation.

RESULTS:

In the wild-type mice, 2-chloro-N6-cyclopentyladenosine significantly improved lung function and attenuated edema, cytokine expression, and myeloperoxidase levels compared with the vehicle-treated mice after ischemia-reperfusion. The incidence of lung ischemia-reperfusion injury was similar in the A1 receptor knockout and wild-type mice; and 2-chloro-N6-cyclopentyladenosine had no effects in the A1 receptor knockout mice. In vitro treatment of neutrophils with 2-chloro-N6-cyclopentyladenosine significantly reduced chemotaxis.

CONCLUSIONS:

Exogenous A1 receptor activation improves lung function and decreases inflammation, edema, and neutrophil chemotaxis after ischemia and reperfusion. These results suggest a potential therapeutic application for A1 receptor agonists for the prevention of lung ischemia-reperfusion injury after transplantation.

PMID:
23398646
PMCID:
PMC3657333
DOI:
10.1016/j.jtcvs.2013.01.006
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center