Format

Send to

Choose Destination
Health Serv Res. 2013 Apr;48(2 Pt 2):713-34. doi: 10.1111/1475-6773.12040. Epub 2013 Feb 10.

Practice variation, bias, and experiential learning in cesarean delivery: a data-based system dynamics approach.

Author information

1
Engineering Systems Division, Massachusetts Institute of Technology, Boston, MA, USA.

Abstract

OBJECTIVES:

To simulate physician-driven dynamics of delivery mode decisions (scheduled cesarean delivery [CD] vs. vaginal delivery [VD] vs. unplanned CD after labor), and to evaluate a behavioral theory of how experiential learning leads to emerging bias toward more CD and practice variation across obstetricians.

DATA SOURCES/STUDY SETTING:

Hospital discharge data on deliveries performed by 300 randomly selected obstetricians in Florida who finished obstetrics residency and started practice after 1991.

STUDY DESIGN:

We develop a system dynamics simulation model of obstetricians' delivery mode decision based on the literature of experiential learning. We calibrate the model and investigate the extent to which the model replicates the data.

PRINCIPAL FINDINGS:

Our learning-based simulation model replicates the empirical data, showing that physicians are more likely to schedule CD as they practice longer. Variation in CD rates is related to the way that physicians learn from outcomes of past decisions and accumulate experience.

CONCLUSIONS:

The repetitive nature of medical decision making, learning from past practice, and accumulating experience can account for increases in CD decisions and practice variation across physicians. Policies aimed at improving medical decision making should account for providers' feedback-based learning mechanisms.

PMID:
23398502
PMCID:
PMC3626332
DOI:
10.1111/1475-6773.12040
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center