Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2013 Feb 6;33(6):2709-17. doi: 10.1523/JNEUROSCI.4196-12.2013.

Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior.

Author information

1
Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303-5030, USA.

Abstract

Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most likely evolved independently in two species: Tritonia diomedea and Pleurobranchaea californica (Mollusca, Gastropoda, Opisthobranchia, Nudipleura). Individuals of both species exhibit escape swimming behaviors consisting of repeated dorsal-ventral whole-body flexions. The central pattern generator (CPG) circuits underlying these behaviors contain homologous identified neurons: DSI and C2 in Tritonia and As and A1 in Pleurobranchaea. Homologs of these neurons also can be found in Hermissenda crassicornis where they are named CPT and C2, respectively. However, members of this species do not exhibit an analogous swimming behavior. In Tritonia and Pleurobranchaea, but not in Hermissenda, the serotonergic DSI homologs modulated the strength of synapses made by C2 homologs. Furthermore, the serotonin receptor antagonist methysergide blocked this neuromodulation and the swimming behavior. Additionally, in Pleurobranchaea, the robustness of swimming correlated with the extent of the synaptic modulation. Finally, injection of serotonin induced the swimming behavior in Tritonia and Pleurobranchaea, but not in Hermissenda. This suggests that the analogous swimming behaviors of Tritonia and Pleurobranchaea share a common dependence on serotonergic neuromodulation. Thus, neuromodulation may provide a mechanism that enables species to acquire analogous behaviors independently using homologous neural circuit components.

PMID:
23392697
DOI:
10.1523/JNEUROSCI.4196-12.2013
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center