Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Gene Ther. 2013 Mar;20(3):186-94. doi: 10.1038/cgt.2013.6. Epub 2013 Feb 8.

Co-delivery of LETM1 and CTMP synergistically inhibits tumor growth in H-ras12V liver cancer model mice.

Author information

1
Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.

Abstract

As hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, development of novel therapeutic approaches for HCC is urgently needed. Two different genes, LETM1 and CTMP, which target mitochondrial functions, were chosen and linked using 2A-peptide sequence. Successful self-cleavage of 2A-peptide induced synergistic antitumor effect in the liver of H-ras12V, the HCC model mice, by simultaneous activation of LETM1 (Leucine zipper/EF hand-containing transmembrane-1) and CTMP (carboxyl-terminal modulator protein). Overexpression of LETM1 and CTMP significantly reduced the incidence of tumorigenesis, which were confirmed by gross and microscopic observations. Morphological changes in mitochondria, such as swelling and loss of cristae, were significant, and the prolonged activation of defects in mitochondrial function led to mitochondria-mediated apoptosis. Furthermore, with CTMP as a direct binding partner of Akt1, and LETM1 as a binding partner of CTMP, LETM1-2A-CTMP downregulated the Akt1 pathway at both Ser473 and Thr308 sites of phosphorylation. Proliferation and angiogenesis, which are important in cancer prognosis, were reduced in tumor sites after introduction of LETM1-2A-CTMP. Taken together, the results indicate that introduction of the mitochondria-targeting genes, LETM1 and CTMP, and self-processing capacity of 2A-peptide sequence exerts an antitumor effect in liver of H-ras12V mice, suggesting its potential as a tool for gene therapy.

PMID:
23392203
DOI:
10.1038/cgt.2013.6
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center