Format

Send to

Choose Destination
See comment in PubMed Commons below
Biosci Biotechnol Biochem. 2013;77(2):253-8. Epub 2013 Feb 7.

Preparation of D-gulose from disaccharide lactitol using microbial and chemical methods.

Author information

  • 1Rare Sugar Research Center, Kagawa University, Kagawa, Japan. morimoto@ag.kagawa-u.ac.jp

Abstract

When an M31 strain of Agrobacterium tumefaciens was grown in a mineral salt medium at 30 °C containing 1.0% lactitol as sole carbon source, a keto-sugar was efficiently accumulated in the supernatant. This oxidation from lactitol to the keto-sugar was caused by M31 cells grown with medium containing a disaccharide unit, including sucrose, lactitol, lactose, maltose, or maltitol, suggesting that the enzyme is inducible. M31 also demonstrated good growth characteristics in Tryptic Soy Broth (TSB) medium containing 1.0% sucrose, and cells grown under these conditions showed strong lactitol transformation activity. The keto-sugar product was reduced by chemical hydrogenation and the resulting product was hydrolyzed to D-gulose, D-galactose, and D-sorbitol by acid hydrolysis, revealing that the reduced products are lactitol and D-gulosyl-(β-1,4)-D-sorbitol. Taken together, these results indicate that M31 can convert lactitol to 3-ketolactitol and thus provide access to the rare sugar D-gulose.

PMID:
23391912
DOI:
10.1271/bbb.120657
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center