Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):E968-77. doi: 10.1073/pnas.1120991110. Epub 2013 Feb 6.

Branching process deconvolution algorithm reveals a detailed cell-cycle transcription program.

Author information

1
Department of Computer Science, Duke University, Durham, NC 27708, USA.

Abstract

Due to cell-to-cell variability and asymmetric cell division, cells in a synchronized population lose synchrony over time. As a result, time-series measurements from synchronized cell populations do not reflect the underlying dynamics of cell-cycle processes. Here, we present a branching process deconvolution algorithm that learns a more accurate view of dynamic cell-cycle processes, free from the convolution effects associated with imperfect cell synchronization. Through wavelet-basis regularization, our method sharpens signal without sharpening noise and can remarkably increase both the dynamic range and the temporal resolution of time-series data. Although applicable to any such data, we demonstrate the utility of our method by applying it to a recent cell-cycle transcription time course in the eukaryote Saccharomyces cerevisiae. Our method more sensitively detects cell-cycle-regulated transcription and reveals subtle timing differences that are masked in the original population measurements. Our algorithm also explicitly learns distinct transcription programs for mother and daughter cells, enabling us to identify 82 genes transcribed almost entirely in early G1 in a daughter-specific manner.

PMID:
23388635
PMCID:
PMC3593847
DOI:
10.1073/pnas.1120991110
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center