Format

Send to

Choose Destination
Cardiovasc Res. 2013 May 1;98(2):192-203. doi: 10.1093/cvr/cvt018. Epub 2013 Feb 5.

Calcium signalling microdomains and the t-tubular system in atrial mycoytes: potential roles in cardiac disease and arrhythmias.

Author information

1
Unit of Cardiac Physiology, Manchester Academic Health Science Centre, Institute of Cardiovascular Science, University of Manchester, 3.23 Core Technology Facility, 46 Grafton Street, Manchester M13 9PT, UK.

Abstract

The atria contribute 25% to ventricular stroke volume and are the site of the commonest cardiac arrhythmia, atrial fibrillation (AF). The initiation of contraction in the atria is similar to that in the ventricle involving a systolic rise of intracellular Ca(2+) concentration ([Ca(2+)](i)). There are, however, substantial inter-species differences in the way systolic Ca(2+) is regulated in atrial cells. These differences are a consequence of a well-developed and functionally relevant transverse (t)-tubule network in the atria of large mammals, including humans, and its virtual absence in smaller laboratory species such as the rat. Where T-tubules are absent, the systolic Ca(2+) transient results from a 'fire-diffuse-fire' sequential recruitment of Ca(2+) release sites from the cell edge to the centre and hence marked spatiotemporal heterogeneity of systolic Ca(2+). Conversely, the well-developed T-tubule network in large mammals ensures a near synchronous rise of [Ca(2+)](i). In addition to synchronizing the systolic rise of [Ca(2+)](i), the presence of T-tubules in the atria of large mammals, by virtue of localization of the L-type Ca(2+) channels and Na(+)-Ca(2+) exchanger antiporters on the T-tubules, may serve to, respectively, accelerate changes in the amplitude of the systolic Ca(2+) transient during inotropic manoeuvres and lower diastolic [Ca(2+)](i). On the other hand, the presence of T-tubules and hence wider cellular distribution of the Na(+)-Ca(2+) exchanger may predispose the atria of large mammals to Ca(2+)-dependent delayed afterdepolarizations (DADs); this may be a determining factor in why the atria of large mammals spontaneously develop and maintain AF.

PMID:
23386275
DOI:
10.1093/cvr/cvt018
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center