Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Mol Sci. 2013 Feb 5;14(2):3343-57. doi: 10.3390/ijms14023343.

Cut-and-Paste of DNA Using an Artificial Restriction DNA Cutter.

Author information

  • 1Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan. komiyama@tara.tsukuba.ac.jp.

Abstract

 DNA manipulations using a completely chemistry-based DNA cutter (ARCUT) have been reviewed. This cutter, recently developed by the authors, is composed of Ce(IV)/EDTA complex and two strands of pseudo-complementary peptide nucleic acid. The site-selective scission proceeds via hydrolysis of targeted phosphodiester linkages, so that the resultant scission fragments can be easily ligated with other fragments by using DNA ligase. Importantly, scission-site and site-specificity of the cutter are freely tuned in terms of the Watson-Crick rule. Thus, when one should like to manipulate DNA according to the need, he or she does not have to think about (1) whether appropriate "restriction enzyme sites" exist near the manipulation site and (2) whether the site-specificity of the restriction enzymes, if any, are sufficient to cut only the aimed position without chopping the DNA at non-targeted sites. Even the human genome can be manipulated, since ARCUT can cut the genome at only one predetermined site. Furthermore, the cutter is useful to promote homologous recombination in human cells, converting a site to desired sequence. The ARCUT-based DNA manipulation should be promising for versatile applications.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
    Loading ...
    Write to the Help Desk