Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 2013 Dec;63(7):688-95. doi: 10.1016/j.neuint.2013.01.028. Epub 2013 Feb 4.

Glial adenosine kinase--a neuropathological marker of the epileptic brain.

Author information

1
Department (Neuro) Pathology, Academisch Medisch Centrum, Amsterdam, Heemstede, The Netherlands; Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands.

Abstract

Experimental research over the past decade has supported the critical role of astrocytes activated by different types of injury and the pathophysiological processes that underlie the development of epilepsy. In both experimental and human epileptic tissues astrocytes undergo complex changes in their physiological properties, which can alter glio-neuronal communication, contributing to seizure precipitation and recurrence. In this context, understanding which of the molecular mechanisms are crucially involved in the regulation of glio-neuronal interactions under pathological conditions associated with seizure development is important to get more insight into the role of astrocytes in epilepsy. This article reviews current knowledge regarding the role of glial adenosine kinase as a neuropathological marker of the epileptic brain. Both experimental findings in clinically relevant models, as well as observations in drug-resistant human epilepsies will be discussed, highlighting the link between astrogliosis, dysfunction of adenosine homeostasis and seizure generation and therefore suggesting new strategies for targeting astrocyte-mediated epileptogenesis.

KEYWORDS:

ADK; Astrocytes; Epilepsy; Human; Rodents

PMID:
23385089
PMCID:
PMC3676477
DOI:
10.1016/j.neuint.2013.01.028
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center