Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharm. 2013 Apr 1;10(4):1322-31. doi: 10.1021/mp300524x. Epub 2013 Mar 8.

Rapid analysis of antibody self-association in complex mixtures using immunogold conjugates.

Author information

1
Center for Biotechnology & Interdisciplinary Studies, Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

Abstract

A key challenge in developing therapeutic antibodies is their highly variable propensities to self-associate at high antibody concentrations (>50 mg/mL) required for subcutaneous delivery. Identification of monoclonal antibodies (mAbs) in the initial discovery process that not only have high binding affinity but also have high solubility and low viscosity would simplify the development of safe and effective antibody therapeutics. Unfortunately, the low purities, small quantities and large numbers of antibody candidates during the early discovery process are incompatible with current methods of measuring antibody self-association. We report a method (affinity-capture self-interaction nanoparticle spectroscopy, AC-SINS) capable of identifying mAbs with low self-association propensity that is robust even at low mAb concentrations (5-50 μg/mL) and in the presence of cell culture media. Gold nanoparticles are coated with polyclonal antibodies specific for human antibodies, and then human mAbs are captured from dilute antibody solutions. We find that the wavelength of maximum absorbance (plasmon wavelength) of antibody-gold conjugates--which red-shifts as the distance between particles is reduced due to attractive mAb self-interactions--is well correlated with light scattering measurements conducted at several orders of magnitude higher antibody concentrations. The generality of AC-SINS makes it well suited for use in diverse settings ranging from antibody discovery to formulation development.

PMID:
23383873
DOI:
10.1021/mp300524x
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center