Send to

Choose Destination
See comment in PubMed Commons below
Eur J Appl Physiol. 2013 Jul;113(7):1685-94. doi: 10.1007/s00421-013-2599-6. Epub 2013 Feb 5.

Effect of acute hypoxia on muscle blood flow, VO₂p, and [HHb] kinetics during leg extension exercise in older men.

Author information

CeRiSM, Centre of Sport Health and Mountain, Rovereto, Italy.


The adjustment of pulmonary oxygen uptake (VO2p), heart rate (HR), limb blood flow (LBF), and muscle deoxygenation [HHb] was examined during the transition to moderate-intensity, knee-extension exercise in six older adults (70 ± 4 years) under two conditions: normoxia (FIO₂ = 20.9 %) and hypoxia (FIO₂ = 15 %). The subjects performed repeated step transitions from an active baseline (3 W) to an absolute work rate (21 W) in both conditions. Phase 2 VO₂p, HR, LBF, and [HHb] data were fit with an exponential model. Under hypoxic conditions, no change was observed in HR kinetics, on the other hand, LBF kinetics was faster (normoxia 34 ± 3 s; hypoxia 28 ± 2), whereas the overall [HHb] adjustment (τ' = TD + τ) was slower (normoxia 28 ± 2; hypoxia 33 ± 4 s). Phase 2 VO₂p kinetics were unchanged (p < 0.05). The faster LBF kinetics and slower [HHb] kinetics reflect an improved matching between O₂ delivery and O₂ utilization at the microvascular level, preventing the phase 2 VO₂p kinetics from become slower in hypoxia. Moreover, the absolute blood flow values were higher in hypoxia (1.17 ± 0.2 L min(-1)) compared to normoxia (0.96 ± 0.2 L min(-1)) during the steady-state exercise at 21 W. These findings support the idea that, for older adults exercising at a low work rate, an increase of limb blood flow offsets the drop in arterial oxygen content (CaO₂) caused by breathing an hypoxic mixture.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center