Format

Send to

Choose Destination
J Vis Exp. 2013 Jan 21;(71). pii: 50048. doi: 10.3791/50048.

Super-resolution imaging of the bacterial division machinery.

Author information

1
Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, USA.

Abstract

Bacterial cell division requires the coordinated assembly of more than ten essential proteins at midcell. Central to this process is the formation of a ring-like suprastructure (Z-ring) by the FtsZ protein at the division plan. The Z-ring consists of multiple single-stranded FtsZ protofilaments, and understanding the arrangement of the protofilaments inside the Z-ring will provide insight into the mechanism of Z-ring assembly and its function as a force generator. This information has remained elusive due to current limitations in conventional fluorescence microscopy and electron microscopy. Conventional fluorescence microscopy is unable to provide a high-resolution image of the Z-ring due to the diffraction limit of light (~200 nm). Electron cryotomographic imaging has detected scattered FtsZ protofilaments in small C. crescentus cells, but is difficult to apply to larger cells such as E. coli or B. subtilis. Here we describe the application of a super-resolution fluorescence microscopy method, Photoactivated Localization Microscopy (PALM), to quantitatively characterize the structural organization of the E. coli Z-ring. PALM imaging offers both high spatial resolution (~35 nm) and specific labeling to enable unambiguous identification of target proteins. We labeled FtsZ with the photoactivatable fluorescent protein mEos2, which switches from green fluorescence (excitation = 488 nm) to red fluorescence (excitation = 561 nm) upon activation at 405 nm. During a PALM experiment, single FtsZ-mEos2 molecules are stochastically activated and the corresponding centroid positions of the single molecules are determined with <20 nm precision. A super-resolution image of the Z-ring is then reconstructed by superimposing the centroid positions of all detected FtsZ-mEos2 molecules. Using this method, we found that the Z-ring has a fixed width of ~100 nm and is composed of a loose bundle of FtsZ protofilaments that overlap with each other in three dimensions. These data provide a springboard for further investigations of the cell cycle dependent changes of the Z-ring and can be applied to other proteins of interest.

PMID:
23380691
PMCID:
PMC3582665
DOI:
10.3791/50048
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for MyJove Corporation Icon for PubMed Central
Loading ...
Support Center