Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2013 Apr 1;304(7):L469-80. doi: 10.1152/ajplung.00150.2012. Epub 2013 Feb 1.

Loss of Cftr function exacerbates the phenotype of Na(+) hyperabsorption in murine airways.

Author information

1
Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, 6029 Thurston Bowles Bldg., Chapel Hill, NC 25799-7248, USA. alessandra_livraghi@med.unc.edu

Abstract

Airway surface hydration depends on the balance between transepithelial Na(+) absorption and Cl(-) secretion. In adult mice, absence of functional cystic fibrosis transmembrane conductance regulator (Cftr) fails to recapitulate human cystic fibrosis (CF) lung disease. In contrast, overexpression of the epithelial Na(+) channel β subunit in transgenic mice (βENaC-Tg) produces unregulated Na(+) hyperabsorption and results in CF-like airway surface dehydration, mucus obstruction, inflammation, and increased neonatal mortality. To investigate whether the combination of airway Na(+) hyperabsorption and absent Cftr-mediated Cl(-) secretion resulted in more severe lung pathology, we generated double-mutant ΔF508 CF/βENaC-Tg mice. Survival of ΔF508 CF/βENaC-Tg mice was reduced compared with βENaC-Tg or ΔF508 CF mice. Absence of functional Cftr did not affect endogenous or transgenic ENaC currents but produced reduced basal components of Cl(-) secretion and tracheal cartilaginous defects in both ΔF508 CF and ΔF508 CF/βENaC-Tg mice. Neonatal ΔF508 CF/βENaC-Tg mice exhibited higher neutrophilic pulmonary inflammation and club cell (Clara cell) necrosis compared with βENaC-Tg littermates. Neonatal ΔF508 CF/βENaC-Tg mice also exhibited spontaneous bacterial infections, but the bacterial burden was similar to that of βENaC-Tg littermates. Adult ΔF508 CF/βENaC-Tg mice exhibited pathological changes associated with eosinophilic crystalline pneumonia, a phenotype not observed in age-matched βENaC-Tg mice. Collectively, these data suggest that the combined abnormalities in Na(+) absorption and Cl(-) secretion produce more severe lung disease than either defect alone. Airway cartilage abnormalities, airway cell necrosis, and exaggerated neutrophil infiltration likely interact with defective mucus clearance caused by βENaC overexpression and absent CFTR-mediated Cl(-) secretion to produce the increased neonatal mortality observed in ΔF508 CF/βENaC-Tg mice.

PMID:
23377346
PMCID:
PMC3627939
DOI:
10.1152/ajplung.00150.2012
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center